Abstract
The preprocessing of data is an important task in rough set theory as well as in Entropy. The discretization of data as part of the preprocessing of data is a very influential process. Is there a connection between the segmentation of the data histogram and data discretization? The authors propose a novel data segmentation technique based on a histogram with regard to the quality of a data discretization. The significance of a cut’s position has been researched on several groups of histograms. A data set reduct was observed with respect to the histogram type. Connections between the data histograms and cuts, reduct and the classification rules have been researched. The result is that the reduct attributes have a more irregular histogram than attributes out of the reduct. The following discretization algorithms were used: the entropy algorithm and the Maximal Discernibility algorithm developed in rough set theory. This article presents the Cuts Selection Method based on histogram segmentation, reduct of data and MD algorithm of discretization. An application on the selected database shows that the benefits of a selection of cuts relies on histogram segmentation. The results of the classification were compared with the results of the Naïve Bayes algorithm.
Subject
General Physics and Astronomy
Reference23 articles.
1. The CRISP-DM model: The new blueprint for data mining;Shearer;J. Data Warehous.,2000
2. Approximate boolean reasoning: Foundations and applications in data mining;Nguyen,2006
3. Multi-modal gray-level histogram modeling and decomposition
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献