Author:
Du Fei,Zhou Peng,Guo Peng,Li Cheng,Deng Lei,Wang Xinyun,Jin Junsong
Abstract
The high strength of 300M steel originates from the heat treatment process after forging, but how hot deformation affects the heat-treated microstructure and mechanical properties is unclear. In this study, compression tests under different hot deformation parameters and post-deformation heat treatment experiments were carried out, and the martensite transformation process was investigated using in situ observation. The results show that the grain size of the specimen deformed at low temperature and high strain rate is smaller, and annealing twins will be formed. Both austenite grain boundaries and twin boundaries hinder the growth of martensite blocks, reducing the size of martensite units after heat treatment and thus resulting in higher yield strength. Besides, the mathematical models were established to describe the relationship between hot deformation parameters and grain size after deformation, martensite packet size and martensite block width, respectively, after heat treatment. The relationship between yield strength and hot deformation parameters was also analyzed. According to the results and models, the hot deformation parameters would be optimized more reasonably to improve the final mechanical properties of 300M steel forgings.
Funder
National Science Fund for Distinguished Young Scholars of China
National Natural Science Foundation of China
Fundamental Research Funds for the Center Universities
Subject
General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献