Abstract
As an electrode material, LiFePO4 has been extensively studied in the field of energy conversion and storage due to its inexpensive cost and excellent safety, as well as good cycling stability. However, it remains a challenge to obtain LiFePO4 electrode materials with acceptable discharge capacity at low temperature. Here, micro/nano-structured LiFePO4 electrode materials with grape-like morphology were fabricated via a facile solvothermal approach using ethanol and OA as the co-solvent, the surfactant as well as the carbon source. The structure and electrochemical properties of the LiFePO4 material were investigated with x-ray diffraction (XRD), field emission scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), and the formation mechanism of the self-assembled micro/nano-structured LiFePO4 was discussed as well. The micro/nano-structured LiFePO4 electrode materials exhibited a high discharge capacity (142 mAh·g−1) at a low temperature of 0 °C, and retained 102 mAh·g−1 when the temperature was decreased to −20 °C. This investigation can provide a reference for the design of micro/nano-structured electrode materials with improvement of the electrochemical performance at low temperature.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hebei Province
China Postdoctoral Science Foundation
Special Project for Local Science and Technology Development, guided by the central government of China
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献