Numerical Reconstruction of Three Holocene Glacial Events in Qiangyong Valley, Southern Tibetan Plateau and Their Implication for Holocene Climate Changes

Author:

Sun Yong,Xu Xiangke,Zhang Lianqing,Liu Jinhua,Zhang Xiaolong,Li Jiule,Pan Baolin

Abstract

The dating of well-preserved Holocene moraines in the Qiangyong Valley, southern Tibetan Plateau (TP), offers great potential for reconstructing Holocene glacier extents and examining climate changes in the region. Guided by Holocene moraine features, this study used Geographic Information System (GIS) model tools to reconstruct paleo-glacier surfaces and glacier equilibrium line altitude (ELA) depressions for three Holocene glacial stages in the valley. The GIS-based models showed that the Qiangyong Valley contained ice volumes of 8.1 × 108, 6.2 × 108, and 4.6 × 108 m3 during the early Holocene, Neoglacial, and Little Ice Age (LIA) glacial stages, and that the ELA was decreased by ~230 ± 25, ~210 ± 25, and ~165 ± 25 m, respectively, compared to modern conditions. Furthermore, the summer temperatures were estimated to be 1.56–1.79, 1.37–1.64, and 1.29–1.32 °C cooler than present to support the three Holocene glacier extents, based on the evidence that the respective precipitation increased by 20–98, 13–109, and 0.9–11 mm relative to the present, which were derived from the lacustrine pollen data for the southern TP. By comparison, this study found that the amplitudes of the ELA-based summer temperature depressions were much larger than the pollen-based counterparts for the three glacial stages, although the two proxies both showed increasing trends in the reconstructed summer temperatures.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3