A Novel Four Mitochondrial Respiration-Related Signature for Predicting Biochemical Recurrence of Prostate Cancer

Author:

Xia Zhongyou,Liu Haolin,Fan Shicheng,Tu Hongtao,Jiang Yongming,Wang Hai,Gu PengORCID,Liu Xiaodong

Abstract

The biochemical recurrence (BCR) of patients with prostate cancer (PCa) after radical prostatectomy is high, and mitochondrial respiration is reported to be associated with the metabolism in PCa development. This study aimed to establish a mitochondrial respiratory gene-based risk model to predict the BCR of PCa. RNA sequencing data of PCa were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and mitochondrial respiratory-related genes (MRGs) were sourced via GeneCards. The differentially expressed mitochondrial respiratory and BCR-related genes (DE-MR-BCRGs) were acquired through overlapping BCR-related differentially expressed genes (BCR-DEGs) and differentially expressed MRGs (DE-MRGs) between PCa samples and controls. Further, univariate Cox, least absolute shrinkage and selection operator (LASSO), and multivariate Cox analyses were performed to construct a DE-MRGs-based risk model. Then, a nomogram was established by analyzing the independent prognostic factor of five clinical features and risk scores. Moreover, Gene Set Enrichment Analysis (GSEA), tumor microenvironment, and drug susceptibility analyses were employed between high- and low-risk groups of PCa patients with BCR. Finally, qRT-PCR was utilized to validate the expression of prognostic genes. We identified 11 DE-MR-BCRGs by overlapping 132 DE-MRGs and 13 BCR-DEGs and constructed a risk model consisting of 4 genes (APOE, DNAH8, EME2, and KIF5A). Furthermore, we established an accurate nomogram, including a risk score and a Gleason score, for the BCR prediction of PCa patients. The GSEA result suggested the risk model was related to the PPAR signaling pathway, the cholesterol catabolic process, the organic hydroxy compound biosynthetic process, the small molecule catabolic process, and the steroid catabolic process. Simultaneously, we found six immune cell types relevant to the risk model: resting memory CD4+ T cells, monocytes, resting mast cells, activated memory CD4+ T cells, regulatory T cells (Tregs), and macrophages M2. Moreover, the risk model could affect the IC50 of 12 cancer drugs, including Lapatinib, Bicalutamide, and Embelin. Finally, qRT-PCR showed that APOE, EME2, and DNAH8 were highly expressed in PCa, while KIF5A was downregulated in PCa. Collectively, a mitochondrial respiratory gene-based nomogram including four genes and one clinical feature was established for BCR prediction in patients with PCa, which could provide novel strategies for further studies.

Funder

Project of Nanchong Science and Technology Bureau

National Natural Science Foundation of China

Yunnan Natural Science Foundation

Yunnan Health Training Project of High-Level Talents

Yunnan Chronic Kidney Disease Clinical Medical Research Center Project

Provincial Natural Science Foundation of Yunnan-Kunming Medical University Joint Foundation

1st Affiliated Hospital of Kunming Medical University

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3