A Dual Attention Encoding Network Using Gradient Profile Loss for Oil Spill Detection Based on SAR Images

Author:

Zhai Jiding,Mu Chunxiao,Hou YongchaoORCID,Wang Jianping,Wang YingjieORCID,Chi HaokunORCID

Abstract

Marine oil spills due to ship collisions or operational errors have caused tremendous damage to the marine environment. In order to better monitor the marine environment on a daily basis and reduce the damage and harm caused by oil pollution, we use marine image information acquired by synthetic aperture radar (SAR) and combine it with image segmentation techniques in deep learning to monitor oil spills. However, it is a significant challenge to accurately distinguish oil spill areas in original SAR images, which are characterized by high noise, blurred boundaries, and uneven intensity. Hence, we propose a dual attention encoding network (DAENet) using an encoder–decoder U-shaped architecture for identifying oil spill areas. In the encoding phase, we use the dual attention module to adaptively integrate local features with their global dependencies, thus improving the fusion feature maps of different scales. Moreover, a gradient profile (GP) loss function is used to improve the recognition accuracy of the oil spill areas’ boundary lines in the DAENet. We used the Deep-SAR oil spill (SOS) dataset with manual annotation for training, testing, and evaluation of the network, and we established a dataset containing original data from GaoFen-3 for network testing and performance evaluation. The results show that DAENet has the highest mIoU of 86.1% and the highest F1-score of 90.2% in the SOS dataset, and it has the highest mIoU of 92.3% and the highest F1-score of 95.1% in the GaoFen-3 dataset. The method proposed in this paper not only improves the detection and identification accuracy of the original SOS dataset, but also provides a more feasible and effective method for marine oil spill monitoring.

Funder

The Youth Innovation Science and Technology Support Program of Shandong Provincial

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3