First Gradually, Then Suddenly: Understanding the Impact of Image Compression on Object Detection Using Deep Learning

Author:

Gandor TomaszORCID,Nalepa JakubORCID

Abstract

Video surveillance systems process high volumes of image data. To enable long-term retention of recorded images and because of the data transfer limitations in geographically distributed systems, lossy compression is commonly applied to images prior to processing, but this causes a deterioration in image quality due to the removal of potentially important image details. In this paper, we investigate the impact of image compression on the performance of object detection methods based on convolutional neural networks. We focus on Joint Photographic Expert Group (JPEG) compression and thoroughly analyze a range of the performance metrics. Our experimental study, performed over a widely used object detection benchmark, assessed the robustness of nine popular object-detection deep models against varying compression characteristics. We show that our methodology can allow practitioners to establish an acceptable compression level for specific use cases; hence, it can play a key role in applications that process and store very large image data.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Resource-aware video streaming (RAViS) framework for object detection system using deep learning algorithm;MethodsX;2023-12

2. Target acquisition performance in the presence of JPEG image compression;Defence Technology;2023-12

3. Energy-Efficient Approximate Edge Inference Systems;ACM Transactions on Embedded Computing Systems;2023-07-24

4. Noise-cuts-Noise Approach for Mitigating the JPEG Distortions in Deep Learning;2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC);2023-02-20

5. ECFRNet: Effective corner feature representations network for image corner detection;Expert Systems with Applications;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3