Research on Minimization of Data Set for State of Charge Prediction

Author:

Liu Tun,Zhao Jundong,Xiang Chaoqun,Cheng Shu

Abstract

The quick estimation and prediction of lithium-ion batteries’ (LIBs) state of charge (SoC) are attracting growing attention, since the LIB has become one of the most essential power sources for daily consumer electronics. Most deep learning methods require plenty of data and more than two LIB parameters to train the model for predicting SoC. In this paper, a single-parameter SoC prediction based on deep learning is realized by cleaning the data for lithium-ion battery parameters and constructing the feature matrix based on the cleaned data. Then, by analyzing the feature matrix’s periodicity and principal component to obtain two kinds of the original eigenmatrix’s substitution matrices, the two substitutions are fused to obtain an excellent prediction effect. In the end, the minimization method is verified with newly measured lithium battery data, and the results show that the MAPE of the SoC prediction reaches 0.96%, the input data are reduced by 93.33%, and the training time is reduced by 96.68%. Fast and accurate prediction of the SoC is achieved by using only a minimum amount of voltage data.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3