Exosomal miR-17-5p, miR-146a-3p, and miR-223-3p Correlate with Radiologic Sequelae in Survivors of COVID-19-Related Acute Respiratory Distress Syndrome

Author:

Curcio Rosa1,Poli Giulia2,Fabi Consuelo2,Sugoni Chiara2,Pasticci Maria Bruna23,Ferranti Roberto4,Rossi Monica4,Folletti Ilenia25ORCID,Sanesi Leandro1,Santoni Edoardo12,Dominioni Irene12,Cavallo Massimiliano1,Morgana Giovanni12,Mordeglia Lorenzo12ORCID,Luca Giovanni2,Pucci Giacomo12ORCID,Brancorsini Stefano2ORCID,Vaudo Gaetano12ORCID

Affiliation:

1. Unit of Internal Medicine, Santa Maria Terni Hospital, 05100 Terni, Italy

2. Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy

3. Infectious Diseases Unit, Santa Maria Terni Hospital, 05100 Terni, Italy

4. Unit of Radiology, Santa Maria Terni Hospital, 05100 Terni, Italy

5. Section of Occupational Medicine, Santa Maria Terni Hospital, 05100 Terni, Italy

Abstract

We investigated the association between circulating microRNAs (miRNAs) potentially involved in the lung inflammatory process and fibrosis development among COVID-19-related acute respiratory distress syndrome (ARDS) survivors. At 4 ± 2 months from clinical recovery, COVID-19-related ARDS survivors matched for age, sex, and clinical characteristics underwent chest high-resolution computerized tomography (HRCT) and were selected based on imaging pattern evolution into fully recovered (N = normal), pulmonary opacities (PO) and fibrosis-like lesions (FL). Based on the previous literature, we performed plasma miRNA profiling of exosomal miRNAs belonging to the NLRP3-inflammasome platform with validated (miR-17-5p, miR-223-3p) and putative targets (miR-146a-5p), miRNAs involved in the post-transcriptional regulation of acute phase cytokines (miR128-3p, miR3168, miR125b-2-3p, miR106a-5p), miRNAs belonging to the NLRP4-inflammasome platform (miR-141-3p) and miRNAs related to post-transcriptional regulation of the fibrosis process (miR-21-5p). miR-17-5p, miR-223-3p, and miR-146a-5p were significantly down-regulated in patients with FL when compared to patients with PO. miR-146a-5p was also down-regulated in patients with FL than in N. The expression of the remaining miRNAs did not differ by group. In patients with long-term pulmonary radiological sequelae following COVID-19-related ARDS, a down-regulation of miR-17-5p, miR-146a-3p, and miR-223-3p correlated to fibrosis development in patients showing persistent hyper-reactivity to inflammatory stimulation. Our results support the hypothesis that NLRP3-Inflammasome could be implicated in the process of fibrotic evolution of COVID-19-associated ARDS.

Funder

University of Perugia, Italy

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3