Calcium Dyshomeostasis Drives Pathophysiology and Neuronal Demise in Age-Related Neurodegenerative Diseases

Author:

Griffioen Gerard1ORCID

Affiliation:

1. ReMYND N.V., Gaston Geenslaan 1, 3001 Leuven, Belgium

Abstract

This review postulates that age-related neurodegeneration entails inappropriate activation of intrinsic pathways to enable brain plasticity through deregulated calcium (Ca2+) signalling. Ca2+ in the cytosol comprises a versatile signal controlling neuronal cell physiology to accommodate adaptive structural and functional changes of neuronal networks (neuronal plasticity) and, as such, is essential for brain function. Although disease risk factors selectively affect different neuronal cell types across age-related neurodegenerative diseases (NDDs), these appear to have in common the ability to impair the specificity of the Ca2+ signal. As a result, non-specific Ca2+ signalling facilitates the development of intraneuronal pathophysiology shared by age-related NDDs, including mitochondrial dysfunction, elevated reactive oxygen species (ROS) levels, impaired proteostasis, and decreased axonal transport, leading to even more Ca2+ dyshomeostasis. These core pathophysiological processes and elevated cytosolic Ca2+ levels comprise a self-enforcing feedforward cycle inevitably spiralling toward high levels of cytosolic Ca2+. The resultant elevated cytosolic Ca2+ levels ultimately gear otherwise physiological effector pathways underlying plasticity toward neuronal demise. Ageing impacts mitochondrial function indiscriminately of the neuronal cell type and, therefore, contributes to the feedforward cycle of pathophysiology development seen in all age-related NDDs. From this perspective, therapeutic interventions to safely restore Ca2+ homeostasis would mitigate the excessive activation of neuronal destruction pathways and, therefore, are expected to have promising neuroprotective potential.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3