Hormonal Regulation and Stimulation Response of Jatropha curcas L. Homolog Overexpression on Tobacco Leaf Growth by Transcriptome Analysis

Author:

Wu Qiuhong1,Zheng Dongchao2,Lian Na13,Zhu Xuli13ORCID,Wu Jun24ORCID

Affiliation:

1. College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China

2. Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China

3. National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China

4. Sichuan-Chongqing Key Laboratory of Characteristic Biological Resources Research and Utilization, Chengdu 610065, China

Abstract

The Flowering locus T (FT) gene encodes the florigen protein, which primarily regulates the flowering time in plants. Recent studies have shown that FT genes also significantly affect plant growth and development. The FT gene overexpression in plants promotes flowering and suppresses leaf and stem development. This study aimed to conduct a transcriptome analysis to investigate the multiple effects of Jatropha curcas L. homolog (JcFT) overexpression on leaf growth in tobacco plants. The findings revealed that JcFT overexpression affected various biological processes during leaf development, including plant hormone levels and signal transduction, lipid oxidation metabolism, terpenoid metabolism, and the jasmonic-acid-mediated signaling pathway. These results suggested that the effects of FT overexpression in plants were complex and multifaceted, and the combination of these factors might contribute to a reduction in the leaf size. This study comprehensively analyzed the effects of JcFT on leaf development at the transcriptome level and provided new insights into the function of FT and its homologous genes.

Funder

Department of Science and Technology of Sichuan Province

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Functional Genomics for Plant Breeding 3.0;International Journal of Molecular Sciences;2024-02-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3