Corneal Wound Healing in the Presence of Antifibrotic Antibody Targeting Collagen Fibrillogenesis: A Pilot Study

Author:

Syed Zeba A.1,Milman Tatyana1,Fertala Jolanta2,Steplewski Andrzej2,Fertala Andrzej2ORCID

Affiliation:

1. Wills Eye Hospital, Philadelphia, PA 19107, USA

2. Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Curtis Building, Room 501, 1015 Walnut Street, Philadelphia, PA 19107, USA

Abstract

Highly organized collagen fibrils interlacing with proteoglycans form the crucial architecture of the cornea and facilitate its transparency. Corneal scarring from accidental injury, surgery, or infection alters this highly organized tissue, causing severe consequences, including blindness. There are no pharmacological or surgical methods to effectively and safely treat excessive corneal scarring. Thus, we tested the anticorneal scarring utility of a rationally designed anticollagen antibody (ACA) whose antifibrotic effects have already been demonstrated in nonocular models. Utilizing a rabbit model with an incisional corneal wound, we analyzed ACA’s effects on forming collagen and proteoglycan-rich extracellular matrices in scar neotissue. We used microscopic and spectroscopic techniques to quantify these components and measure crucial parameters characterizing the structure and organization of collagen fibrils. Moreover, we analyzed the spatial distribution of collagen and proteoglycans in normal and healing corneas. Our study demonstrated significant changes in the quality and quantity of the analyzed molecules synthesized in scar neotissue. It showed that these changes extend beyond incision margins. It also showed ACA’s positive impact on some crucial parameters defining proper cornea structure. This pilot study provides a stepping stone for future tests of therapeutic approaches that target corneal extracellular scar matrix assembly.

Funder

PNC Charitable Trust

Joan and John Mullen Spine Injury Research Innovation Fund

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3