Theoretical Study of Structure and Photophysics of Homologous Series of Bis(arylydene)cycloalkanones

Author:

Starostin Roman O.12,Freidzon Alexandra Ya.34ORCID,Gromov Sergey P.12ORCID

Affiliation:

1. FSRC “Crystallography and Photonics”, Photochemistry Center of RAS, Russian Academy of Sciences, Novatorov Str. 7A-1, Moscow 119421, Russia

2. Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia

3. Institute of Nanoengineering in Electronics, Spintronics and Photonics, National Research Nuclear University MEPhI, Kashirskoye Shosse, 31, Moscow 115409, Russia

4. Faculty of Chemistry, Molecular Chemistry and Materials Science, Weizmann Institute of Science, 234 Herzl Street, P.O. Box 26, Rehovot 7610001, Israel

Abstract

Photophysical properties of a series of bis(arylydene)cycloalkanone dyes with various donor substituents are studied using quantum chemistry. Their capacity for luminescence and nonradiative relaxation through trans–cis isomerization is related to their structure, in particular, to the donor capacity of the substituents and the degree of conjugation due to the central cycloalkanone moiety. It is shown that cyclohexanone central moiety introduces distortions and disrupts the conjugation, thus leading to a nonmonotonic change in their properties. The increasing donor capacity of the substituents causes increase in the HOMO energy (rise in the oxidation potential) and decrease in the HOMO–LUMO gap, which results in the red shift of the absorption spectra. The ability of the excited dye to relax through fluorescence or through trans–cis isomerization is governed by the height of the barrier between the Franck–Condon and S1–S0 conical intersection regions on the potential energy surface of the lowest π-π* excited state. This barrier also correlates with the donor capacity of the substituents and the degree of conjugation between the central and donor moieties. The calculated fluorescence and trans–cis isomerization rates are in good agreement with the observed fluorescence quantum yields.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3