EGF, TGF-α and Amphiregulin Differently Regulate Endometrium-Derived Mesenchymal Stromal/Stem Cells

Author:

Kamentseva Rimma Sergeevna1ORCID,Kharchenko Marianna Viktorovna1ORCID,Gabdrahmanova Gulnara Vladikovna1,Kotov Michael Alexandrovich12ORCID,Kosheverova Vera Vladislavovna1ORCID,Kornilova Elena Sergeevna13ORCID

Affiliation:

1. Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia

2. Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Hlopina St. 11, St. Petersburg 195251, Russia

3. Faculty of Biology, St. Petersburg State University, 7-9 Universitetskaya Embankment, St. Petersburg 199034, Russia

Abstract

The prototypical receptor tyrosine kinase epidermal growth factor receptor (EGFR) is regulated by a set of its ligands, which determines the specificity of signaling and intracellular fate of the receptor. The EGFR signaling system is well characterized in immortalized cell lines such as HeLa derived from tumor tissues, but much less is known about EGFR function in untransformed multipotent stromal/stem cells (MSCs). We compared the effect of epidermal growth factor (EGF), transforming growth factor-α (TGF-α) and amphiregulin (AREG) on physiological responses in endometrial MSCs (enMSC) and HeLa cells. In addition, using Western blotting and confocal microscopy, we studied the internalization and degradation of EGFR stimulated by the three ligands in these cell lines. We demonstrated that unlike HeLa, EGF and TGF-α, but not AREG, stimulated enMSC proliferation and prevented decidual differentiation in an EGFR-dependent manner. In HeLa cells, EGF targeted EGFR for degradation, while TGF-α stimulated its recycling. Surprisingly, in enMSC, both ligands caused EGFR degradation. In both cell lines, AREG-EGFR internalization was not registered. In HeLa cells, EGFR was degraded within 2 h, restoring its level in 24 h, while in enMSC, degradation took more than 4–8 h, and the low EGFR level persisted for several days. This indicates that EGFR homeostasis in MSCs may differ significantly from that in immortalized cell lines.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3