Role of Bacteria-Derived Flavins in Plant Growth Promotion and Phytochemical Accumulation in Leafy Vegetables

Author:

Ajeethan Nivethika1ORCID,Yurgel Svetlana N.2,Abbey Lord1ORCID

Affiliation:

1. Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Halifax, NS B2N 5E3, Canada

2. USDA, ARS, Grain Legume Genetics and Physiology Research Unit, Prosser, WA 99350, USA

Abstract

Sinorhizobium meliloti 1021 bacteria secretes a considerable amount of flavins (FLs) and can form a nitrogen-fixing symbiosis with legumes. This strain is also associated with non-legume plants. However, its role in plant growth promotion (PGP) of non-legumes is not well understood. The present study evaluated the growth and development of lettuce (Lactuca sativa) and kale (Brassica oleracea var. acephala) plants inoculated with S. meliloti 1021 (FL+) and its mutant 1021ΔribBA, with a limited ability to secrete FLs (FL−). The results from this study indicated that inoculation with 1021 significantly (p < 0.05) increased the lengths and surface areas of the roots and hypocotyls of the seedlings compared to 1021ΔribBA. The kale and lettuce seedlings recorded 19% and 14% increases in total root length, respectively, following inoculation with 1021 compared to 1021ΔribBA. A greenhouse study showed that plant growth, photosynthetic rate, and yield were improved by 1021 inoculation. Moreover, chlorophylls a and b, and total carotenoids were more significantly (p < 0.05) increased in kale plants associated with 1021 than non-inoculated plants. In kale, total phenolics and flavonoids were significantly (p < 0.05) increased by 6% and 23%, respectively, and in lettuce, the increments were 102% and 57%, respectively, following 1021 inoculation. Overall, bacterial-derived FLs enhanced kale and lettuce plant growth, physiological indices, and yield. Future investigation will use proteomic approaches combined with plant physiological responses to better understand host-plant responses to bacteria-derived FLs.

Funder

Canada Foundation for Innovation

USDA ARS Project

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference78 articles.

1. Alexandratos, N., and Bruinsma, J. (2023, March 23). World Agriculture Towards 2030/2050: The 2012 Revision. Available online: https://ageconsearch.umn.edu/record/288998.

2. Global Demand for Food Is Rising. Can We Meet it?;Elferink;Harv. Bus Rev.,2016

3. The Impact of Chemical Fertilizers on Our Environment and Ecosystem;Kumar;Chief Ed.,2019

4. Investigation of Effect of Chemical Fertilizers on Environment;Savci;APCBEE Procedia,2012

5. Fertilizers and Nitrate Pollution of Surface and Ground Water: An Increasingly Pervasive Global Problem;Craswell;SN Appl. Sci.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3