Proteome-Level Investigation of Vitis amurensis Calli Transformed with a Constitutively Active, Ca2+-Independent Form of the Arabidopsis AtCPK1 Gene

Author:

Veremeichik Galina N.1ORCID,Bulgakov Dmitry V.1ORCID,Konnova Yuliya A.1,Brodovskaya Evgenia V.1,Grigorchuk Valeria P.1,Bulgakov Victor P.1

Affiliation:

1. Federal Scientific Centre of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia

Abstract

Calcium-dependent protein kinases (CDPKs) are one of the main Ca2+ decoders in plants. Among them, Arabidopsis thaliana AtCPK1 is one of the most studied CDPK genes as a positive regulator of plant responses to biotic and abiotic stress. The mutated form of AtCPK1, in which the autoinhibitory domain is inactivated (AtCPK1-Ca), provides constitutive kinase activity by mimicking a stress-induced increase in the Ca2+ flux. In the present study, we performed a proteomic analysis of Vitis amurensis calli overexpressing the AtCPK1-Ca form using untransformed calli as a control. In our previous studies, we have shown that the overexpression of this mutant form leads to the activation of secondary metabolism in plant cell cultures, including an increase in resveratrol biosynthesis in V. amurensis cell cultures. We analyzed upregulated and downregulated proteins in control and transgenic callus cultures using two-dimensional gel electrophoresis, and Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF). In calli transformed with AtCPK1-Ca, an increased amounts of pathogenesis-related proteins were found. A quantitative real-time PCR analysis confirmed this result.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3