Transcriptome from Paired Samples Improves the Power of Comprehensive COVID-19 Host-Viral Characterization

Author:

Milicevic Ognjen1ORCID,Loncar Ana2,Abazovic Dzihan3,Vukcevic Marija2ORCID,Despot Dragana2,Djukic Tatjana4ORCID,Djukic Vladimir56,Milovanovic Andjela57,Panic Nikola56,Plecic Nemanja6,Banko Ana8ORCID

Affiliation:

1. Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia

2. Institute for Biocides and Medical Ecology, 11000 Belgrade, Serbia

3. Biocell Hospital, 11000 Belgrade, Serbia

4. Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia

5. Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia

6. University Clinic “Dr Dragisa Misovic”, 11000 Belgrade, Serbia

7. Clinic for Medical Rehabilitation, Clinical Center of Serbia, 11000 Belgrade, Serbia

8. Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia

Abstract

Previous transcriptome profiling studies showed significantly upregulated genes and altered biological pathways in acute COVID-19. However, changes in the transcriptional signatures during a defined time frame are not yet examined and described. The aims of this study included viral metagenomics and evaluation of the total expression in time-matched and tissue-matched paired COVID-19 samples with the analysis of the host splicing profile to reveal potential therapeutic targets. Prospective analysis of paired nasopharyngeal swabs (NPS) and blood (BL) samples from 18 COVID-19 patients with acute and resolved infection performed using Kallisto, Suppa2, Centrifuge, EdgeR, PantherDB, and L1000CDS2 tools. In NPS, we discovered 6 genes with changed splicing and 40 differentially expressed genes (DEG) that yielded 88 altered pathways. Blood samples yielded 15 alternatively spliced genes. Although the unpaired DEG analysis failed, pairing identified 78 genes and 242 altered pathways with meaningful clinical interpretation and new candidate drug combinations with up to 65% overlap. Metagenomics analyses showed SARS-CoV-2 dominance during and after the acute infection, with a significant reduction in NPS (0.008 vs. 0.002, p = 0.019). Even though both NPS and BL give meaningful insights into expression changes, this is the first demonstration of how the power of blood analysis is vastly maximized by pairing. The obtained results essentially showed that pairing is a determinant between a failed and a comprehensive study. Finally, the bioinformatics results prove to be a comprehensive tool for full-action insights, drug development, and infectious disease research when designed properly.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3