Decreased Hippocampal Neurogenesis in Aged Male Wistar Rats Is Not Associated with Memory Acquisition in a Water Maze

Author:

Stepanichev Mikhail1,Aniol Victor1,Lazareva Natalia1,Gulyaeva Natalia1ORCID

Affiliation:

1. Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Str., 5a, Moscow 117485, Russia

Abstract

Brain aging is associated with a progressive decrease in learning abilities, memory, attention, decision making, and sensory perception. Age-related cognitive disturbances may be related to a decrease in the functional capacities of the hippocampus. This brain region is essential for learning and memory, and the lifelong neurogenesis occurring in the subgranular zone of the dentate gyrus may be a key event mediating the mnemonic functions of the hippocampus. In the present study, we investigated whether age-related changes in hippocampal neurogenesis are associated with learning and memory disturbances. Four- and 24-month-old rats were trained to find a hidden platform in a water maze. Though the older group showed higher latency to search the platform as compared to the younger group, both groups learned the task. However, the density of proliferating (PCNA-positive), differentiating (Dcx-positive), and new neurons (pre-labeled BrdU-positive) was significantly lower in the hippocampus of aged rats as compared to young ones. This inhibition of neurogenesis could be related to increased local production of nitric oxide since the density of neurons expressing neuronal NO-synthase was higher in the aged hippocampus. Thus, we can suggest that an age-related decrease in neurogenesis is not directly associated with place learning in aged rats.

Funder

RUSSIAN SCIENCE FOUNDATION

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Changes of Signaling Pathways in Hypothalamic Neurons with Aging;Current Issues in Molecular Biology;2023-10-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3