Mechanism of Action and Efficiency of Ag3PO4-Based Photocatalysts for the Control of Hazardous Gram-Positive Pathogens

Author:

Paluch Emil1ORCID,Seniuk Alicja1,Plesh Gustav2,Widelski Jarosław3ORCID,Szymański Damian4ORCID,Wiglusz Rafał J.4ORCID,Motola Martin2ORCID,Dworniczek Ewa1

Affiliation:

1. Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Tytusa Chałubińskiego 4, 50-376 Wroclaw, Poland

2. Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia

3. Department of Pharmacognosy with Medicinal Plants Garden, Lublin Medical University, 20-093 Lublin, Poland

4. Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland

Abstract

Silver phosphate and its composites have been attracting extensive interest as photocatalysts potentially effective against pathogenic microorganisms. The purpose of the present study was to investigate the mechanism of bactericidal action on cells of opportunistic pathogens. The Ag3PO4/P25 (AGP/P25) and Ag3PO4/HA (HA/AGP) powders were prepared via a co-precipitation method. Thereafter, their antimicrobial properties against Enterococcus faecalis, Staphylococcus epidermidis, and Staphylococcus aureus (clinical and reference strains) were analyzed in the dark and after exposure to visible light (VIS). The mechanism leading to cell death was investigated by the leakage of metabolites and potassium ions, oxidative stress, and ROS production. Morphological changes of the bacterial cells were visualized by transmission electron microscopy (TEM) and scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy (SEM EDS) analysis. It has been shown that Ag3PO4-based composites are highly effective agents that can eradicate 100% of bacterial populations during the 60 min photocatalytic inactivation. Their action is mainly due to the production of hydroxyl radicals and photogenerated holes which lead to oxidative stress in cells. The strong affinity to the bacterial cell wall, as well as the well-known biocidal properties of silver itself, increase undoubtedly the antimicrobial potential of the Ag3PO4-based composites.

Funder

Medical University of Wroclaw

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3