Animal Models for Studying Protein-Bound Uremic Toxin Removal—A Systematic Review

Author:

Ahmed Sabbir1ORCID,de Vries Joost C.2,Lu Jingyi1ORCID,Stuart Milan H. Verrijn2,Mihăilă Silvia M.1,Vernooij Robin W. M.23,Masereeuw Rosalinde1ORCID,Gerritsen Karin G. F.2ORCID

Affiliation:

1. Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands

2. Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands

3. Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands

Abstract

Protein-bound uremic toxins (PBUTs) are associated with the progression of chronic kidney disease (CKD) and its associated morbidity and mortality. The conventional dialysis techniques are unable to efficiently remove PBUTs due to their plasma protein binding. Therefore, novel approaches are being developed, but these require validation in animals before clinical trials can begin. We conducted a systematic review to document PBUT concentrations in various models and species. The search strategy returned 1163 results for which abstracts were screened, resulting in 65 full-text papers for data extraction (rats (n = 41), mice (n = 17), dogs (n = 3), cats (n = 4), goats (n = 1), and pigs (n = 1)). We performed descriptive and comparative analyses on indoxyl sulfate (IS) concentrations in rats and mice. The data on large animals and on other PBUTs were too heterogeneous for pooled analysis. Most rodent studies reported mean uremic concentrations of plasma IS close to or within the range of those during kidney failure in humans, with the highest in tubular injury models in rats. Compared to nephron loss models in rats, a greater rise in plasma IS compared to creatinine was found in tubular injury models, suggesting tubular secretion was more affected than glomerular filtration. In summary, tubular injury rat models may be most relevant for the in vivo validation of novel PBUT-lowering strategies for kidney failure in humans.

Funder

European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant

National Growth Fund program NXTGEN HIGHTECH and by the European Commission

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3