Ficus carica Latex Modulates Immunity-Linked Gene Expression in Human Papillomavirus Positive Cervical Cancer Cell Lines: Evidence from RNA Seq Transcriptome Analysis

Author:

Cakir Muharrem Okan1,Bilge Ugur2ORCID,Naughton Declan1,Ashrafi G. Hossein1ORCID

Affiliation:

1. School of Life Sciences, Pharmacy and Chemistry, Kingston University London, London KT1 2EE, UK

2. Department of Biostatistic and Medical Informatics, Faculty of Medicine, Akdeniz University, 07058 Antalya, Turkey

Abstract

Cervical carcinogenesis is the leading cause of cancer-related deaths in women, and the role of high-risk human papillomavirus (HR-HPV) as a possible risk factor in the development of this cancer is well recognized. Despite the availability of multi-therapeutic approaches, there is still major concern regarding the prevention of metastatic dissemination and excessive tissue injuries. Therefore, it is imperative to develop a safer and more efficient treatment modality. Ficus carica, a natural plant, has shown potential therapeutic properties through its fruit latex when applied to HPV-positive cervical cancer cell lines. However, the mechanisms of action of Ficus carica (fig) latex are not well understood. This study aims to provide a deeper insight into the biological activities of fig latex on human cervical cancer cell lines expressing high-risk HPV types 16 and 18. The data obtained from this study reveal that fig latex influences the expression of genes involved in “Class I MHC-mediated antigen presentation” as well as “Antigen processing: Ubiquitination and Proteasome degradation”. These genes play a crucial role in host immune surveillance and the resolution of infection. Notably, Western blot analysis corroborated these findings, demonstrating an increase in the expression of MHC class I in HeLa cells after fig latex treatment. Findings from this study suggest that fig latex may enhance T cell responses against oncogenic HPV, which could be beneficial for the clearance of early-stage cancer.

Funder

Kingston University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3