Three Decades of REDOR in Protein Science: A Solid-State NMR Technique for Distance Measurement and Spectral Editing

Author:

Toke Orsolya1ORCID

Affiliation:

1. Laboratory for NMR Spectroscopy, Structural Research Centre, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary

Abstract

Solid-state NMR (ss-NMR) is a powerful tool to investigate noncrystallizable, poorly soluble molecular systems, such as membrane proteins, amyloids, and cell walls, in environments that closely resemble their physical sites of action. Rotational-echo double resonance (REDOR) is an ss-NMR methodology, which by reintroducing heteronuclear dipolar coupling under magic angle spinning conditions provides intramolecular and intermolecular distance restraints at the atomic level. In addition, REDOR can be exploited as a selection tool to filter spectra based on dipolar couplings. Used extensively as a spectroscopic ruler between isolated spins in site-specifically labeled systems and more recently as a building block in multidimensional ss-NMR pulse sequences allowing the simultaneous measurement of multiple distances, REDOR yields atomic-scale information on the structure and interaction of proteins. By extending REDOR to the determination of 1H–X dipolar couplings in recent years, the limit of measurable distances has reached ~15–20 Å, making it an attractive method of choice for the study of complex biomolecular assemblies. Following a methodological introduction including the most recent implementations, examples are discussed to illustrate the versatility of REDOR in the study of biological systems.

Funder

National Research, Development and Innovation Office, Hungary

Hungarian Academy of Sciences

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference166 articles.

1. Mehring, M. (1983). Principles of High Resolution NMR in Solids, Springer. [2nd ed.].

2. Schmidt-Rohr, K., and Spiess, H.W. (1997). Multidimensional Solid-State NMR and Polymers, Academic Press.

3. Solid-state NMR spectroscopy on complex biomolecules;Renault;Angew. Chem. Int. Ed. Engl.,2010

4. Solid-state NMR spectroscopy;Reif;Nat. Rev. Methods Primers,2021

5. Solid-State NMR: Methods for Biological Solids;Ahlawat;Chem. Rev.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Structures of Bioactive Proteins as Determined by Nuclear Magnetic Resonance;International Journal of Molecular Sciences;2023-12-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3