Platelets Rich Plasma Increases Antioxidant Defenses of Tenocytes via Nrf2 Signal Pathway

Author:

Tognoloni Alessia1ORCID,Bartolini Desiree2ORCID,Pepe Marco1,Di Meo Antonio1,Porcellato Ilaria1ORCID,Guidoni Kubra1,Galli Francesco2ORCID,Chiaradia Elisabetta1ORCID

Affiliation:

1. Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy

2. Department of Pharmaceutical Sciences, University of Perugia, 06122 Perugia, Italy

Abstract

Tendinopathies are common disabling conditions in equine and human athletes. The etiology is still unclear, although reactive oxygen species (ROS) and oxidative stress (OS) seem to play a crucial role. In addition, OS has been implicated in the failure of tendon lesion repair. Platelet-rich plasma (PRP) is rich in growth factors that promote tissue regeneration. This is a promising therapeutic approach in tendon injury. Moreover, growing evidence has been attributed to PRP antioxidant effects that can sustain tissue healing. In this study, the potential antioxidant effects of PRP in tenocytes exposed to oxidative stress were investigated. The results demonstrated that PRP reduces protein and lipid oxidative damage and protects tenocytes from OS-induced cell death. The results also showed that PRP was able to increase nuclear levels of redox-dependent transcription factor Nrf2 and to induce some antioxidant/phase II detoxifying enzymes (superoxide dismutase 2, catalase, heme oxygenase 1, NAD(P)H oxidoreductase quinone-1, glutamate cysteine ligase catalytic subunit and glutathione, S-transferase). Moreover, PRP also increased the enzymatic activity of catalase and glutathione S-transferase. In conclusion, this study suggests that PRP could activate various cellular signaling pathways, including the Nrf2 pathway, for the restoration of tenocyte homeostasis and to promote tendon regeneration and repair following tendon injuries.

Funder

University of Perugia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference64 articles.

1. Tendon development and diseases;Gaut;Wiley Interdiscip. Rev. Dev. Biol.,2016

2. Tendinopathy: Injury, repair, and current exploration;Lipman;Drug Des. Devel. Ther.,2018

3. Tendinopathy;Millar;Nat. Rev. Dis. Prim.,2021

4. Tendon Basic Science;Flatow;J. Orthop. Res.,2015

5. Tissue engineering strategies in ligament regeneration;Yilgor;Stem Cells Int.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3