Construction of a Matrix Cancer-Associated Fibroblast Signature Gene-Based Risk Prognostic Signature for Directing Immunotherapy in Patients with Breast Cancer Using Single-Cell Analysis and Machine Learning

Author:

Huang Biaojie1,Chen Qiurui2ORCID,Ye Zhiyun2,Zeng Lin2,Huang Cuibing2,Xie Yuting2,Zhang Rongxin23,Shen Han23ORCID

Affiliation:

1. College of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China

2. School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China

3. Institute of Biopharmaceutical Research, Guangdong Pharmaceutical University, Guangzhou 510006, China

Abstract

Cancer-associated fibroblasts (CAFs) are heterogeneous constituents of the tumor microenvironment involved in the tumorigenesis, progression, and therapeutic responses of tumors. This study identified four distinct CAF subtypes of breast cancer (BRCA) using single-cell RNA sequencing (RNA-seq) data. Of these, matrix CAFs (mCAFs) were significantly associated with tumor matrix remodeling and strongly correlated with the transforming growth factor (TGF)-β signaling pathway. Consensus clustering of The Cancer Genome Atlas (TCGA) BRCA dataset using mCAF single-cell characteristic gene signatures segregated samples into high-fibrotic and low-fibrotic groups. Patients in the high-fibrotic group exhibited a significantly poor prognosis. A weighted gene co-expression network analysis and univariate Cox analysis of bulk RNA-seq data revealed 17 differential genes with prognostic values. The mCAF risk prognosis signature (mRPS) was developed using 10 machine learning algorithms. The clinical outcome predictive accuracy of the mRPS was higher than that of the conventional TNM staging system. mRPS was correlated with the infiltration level of anti-tumor effector immune cells. Based on consensus prognostic genes, BRCA samples were classified into the following two subtypes using six machine learning algorithms (accuracy > 90%): interferon (IFN)-γ-dominant (immune C2) and TGF-β-dominant (immune C6) subtypes. Patients with mRPS downregulation were associated with improved prognosis, suggesting that they can potentially benefit from immunotherapy. Thus, the mRPS model can stably predict BRCA prognosis, reflect the local immune status of the tumor, and aid clinical decisions on tumor immunotherapy.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Characteristic Innovation Projects in Ordinary Colleges and Universities of Guangdong Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3