Naegleria fowleri Extracellular Vesicles Induce Proinflammatory Immune Responses in BV-2 Microglial Cells

Author:

Lê Hương Giang12,Kang Jung-Mi12,Võ Tuấn Cường12,Yoo Won Gi12ORCID,Na Byoung-Kuk12ORCID

Affiliation:

1. Department of Parasitology and Tropical Medicine, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea

2. Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea

Abstract

Extracellular vesicles (EVs) of protozoan parasites have diverse biological functions that are essential for parasite survival and host–parasite interactions. In this study, we characterized the functional properties of EVs from Naegleria fowleri, a pathogenic amoeba that causes a fatal brain infection called primary amoebic meningoencephalitis (PAM). N. fowleri EVs (NfEVs) have been shown to be internalized by host cells such as C6 glial cells and BV-2 microglial cells without causing direct cell death, indicating their potential roles in modulating host cell functions. NfEVs induced increased expression of proinflammatory cytokines and chemokines such as TNF-α, IL-1α, IL-1β, IL-6, IL-17, IFN-γ, MIP-1α, and MIP-2 in BV-2 microglial cells; these increases were initiated via MyD88-dependent TLR-2/TLR-4. The production levels of proinflammatory cytokines and chemokines in NfEVs-stimulated BV-2 microglial cells were effectively downregulated by inhibitors of MAPK, NF-κB, or JAK-STAT. Phosphorylation levels of JNK, p38, ERK, p65, JAK-1, and STAT3 were increased in NfEVs-stimulated BV-2 microglial cells but were effectively suppressed by each corresponding inhibitor. These results suggest that NfEVs could induce proinflammatory immune responses in BV-2 microglial cells via the NF-κB-dependent MAPK and JAK-STAT signaling pathways. Taken together, these findings suggest that NfEVs are pathogenic factors involved in the contact-independent pathogenic mechanisms of N. fowleri by inducing proinflammatory immune responses in BV-2 microglial cells, further contributing to deleterious inflammation in infected foci by activating subsequent inflammation cascades in other brain cells.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3