Sodium Butyrate as Key Regulator of Mitochondrial Function and Barrier Integrity of Human Glomerular Endothelial Cells

Author:

Nicese Maria Novella12,Bijkerk Roel12ORCID,Van Zonneveld Anton Jan12ORCID,Van den Berg Bernard M.12ORCID,Rotmans Joris I.12ORCID

Affiliation:

1. Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands

2. Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands

Abstract

The gut microbiota has emerged as an important modulator of cardiovascular and renal homeostasis. The composition of gut microbiota in patients suffering from chronic kidney disease (CKD) is altered, where a lower number of bacteria producing short chain fatty acids (SCFAs) is observed. It is known that SCFAs, such as butyrate and acetate, have protective effects against cardiovascular diseases and CKD but their mechanisms of action remain largely unexplored. In the present study, we investigated the effect of butyrate and acetate on glomerular endothelial cells. Human glomerular microvascular endothelial cells (hgMVECs) were cultured and exposed to butyrate and acetate and their effects on cellular proliferation, mitochondrial mass and metabolism, as well as monolayer integrity were studied. While acetate did not show any effects on hgMVECs, our results revealed that butyrate reduces the proliferation of hgMVECs, strengthens the endothelial barrier through increased expression of VE-cadherin and Claudin-5 and promotes mitochondrial biogenesis. Moreover, butyrate reduces the increase in oxygen consumption induced by lipopolysaccharides (LPS), revealing a protective effect of butyrate against the detrimental effects of LPS. Taken together, our data show that butyrate is a key player in endothelial integrity and metabolic homeostasis.

Funder

the Rembrandt Institute for Cardiovascular Science

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3