Molecular Characterization and Functional Analysis of GPCR Gene Bx-srh-1 in Pinewood Nematode (Bursaphelenchus xylophilus)

Author:

Cao Yefan1,Wang Xizhuo1,Wang Laifa1,Wang Xiang1,Yuan Yanzhi1,Cheng Xiangchen2,Lv Chunhe2

Affiliation:

1. Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, No. 2 Dongxiaofu, Haidian, Beijing 100091, China

2. Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, 58 Huanghe North Street, Shenyang 110034, China

Abstract

Bursaphelenchus xylophilus, also known as the pine wood nematode (PWD), which causes pine wilt disease (PWD), is one of the most devastating diseases affecting pine forests globally. G protein-coupled receptors (GPCRs) are crucial in many biological processes and serve as privileged points of communication between cells and the surrounding environment. α-pinene has been found to play a crucial role in combating the infection, colonization, and early stages of pathogenesis caused by B. xylophilus. In this study, we investigated the molecular characteristics and biological functions of the GPCR gene Bx-srh-1 in B. xylophilus. Fluorescence in situ hybridization (FISH) was performed to determine the spatial expression patterns of Bx-srh-1 in B. xylophilus. The results indicated that Bx-srh-1 is expressed in the intestine and subcutaneous tissues of J2 and J3 juveniles and in the spicules of adult males and vulvae of adult females. RNA interference (RNAi) was used to analyze Bx-srh-1 gene function, and we examined the expression patterns of Bx-srh-1 in B. xylophilus under α-pinene stress. The RNA interference indicated that Bx-srh-1 was involved in the reproductive ability and pathogenicity of B. xylophilus; the expression levels of Bx-srh-1 significantly increased after the exposure to α-pinene for 12 h, and they peaked at 48 h. Silencing Bx-srh-1 may therefore lead to a reduction in B. xylophilus reproduction and pathogenicity. These results demonstrate that Bx-srh-1 is related to the feeding behavior, reproduction, pathogenicity, and resistance to α-pinene process of B. xylophilus.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Forestry

Reference49 articles.

1. Sutherland, J.R. (2008). Pine Wilt Disease, Springer.

2. Mota, M.M., Futai, K., and Vieira, P. (2009). Integrated Management of Fruit Crops Nematodes, Springer.

3. Stage-specific transcriptome of Bursaphelenchus xylophilus reveals temporal regulation of effector genes and roles of the dauer-like stages in the lifecycle;Tanaka;Sci. Rep.,2019

4. Distribution of the pinewood nematode in China and susceptibility of some Chinese and exotic pines to the nematode;Yang;Can. J. For. Res.,1989

5. First report of Bursaphelenchus xylophilus in Portugal and in Europe;Mota;Nematology,1999

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3