Preliminary Tc Calculations for Iron-Based Superconductivity in NaFeAs, LiFeAs, FeSe and Nanostructured FeSe/SrTiO3 Superconductors

Author:

Wong Chi Ho123,Lortz Rolf1

Affiliation:

1. Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China

2. Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China

3. Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hong Kong, China

Abstract

Many theoretical models of iron-based superconductors (IBSC) have been proposed, but the superconducting transition temperature (Tc) calculations based on these models are usually missing. We have chosen two models of iron-based superconductors from the literature and computed the Tc values accordingly; recently two models have been announced which suggest that the superconducting electron concentration involved in the pairing mechanism of iron-based superconductors may have been underestimated and that the antiferromagnetism and the induced xy potential may even have a dramatic amplification effect on electron–phonon coupling. We use bulk FeSe, LiFeAs and NaFeAs data to calculate the Tc based on these models and test if the combined model can predict the superconducting transition temperature (Tc) of the nanostructured FeSe monolayer well. To substantiate the recently announced xy potential in the literature, we create a two-channel model to separately superimpose the dynamics of the electron in the upper and lower tetrahedral plane. The results of our two-channel model support the literature data. While scientists are still searching for a universal DFT functional that can describe the pairing mechanism of all iron-based superconductors, we base our model on the ARPES data to propose an empirical combination of a DFT functional for revising the electron–phonon scattering matrix in the superconducting state, which ensures that all electrons involved in iron-based superconductivity are included in the computation. Our computational model takes into account this amplifying effect of antiferromagnetism and the correction of the electron–phonon scattering matrix, together with the abnormal soft out-of-plane lattice vibration of the layered structure. This allows us to calculate theoretical Tc values of LiFeAs, NaFeAs and FeSe as a function of pressure that correspond reasonably well to the experimental values. More importantly, by taking into account the interfacial effect between an FeSe monolayer and its SrTiO3 substrate as an additional gain factor, our calculated Tc value is up to 91 K and provides evidence that the strong Tc enhancement recently observed in such monolayers with Tc reaching 100 K may be contributed from the electrons within the ARPES range.

Publisher

MDPI AG

Subject

General Materials Science

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3