Experiment for Measuring Mechanical Properties of High-Strength Steel Sheets under Cyclic Loading by V-Shaped Double-Shear-Zone Specimens

Author:

Yan Geng12,Lin Yanli12,Wang Shuo12,Xu Enqi12,He Zhubin12,Chen Kelin12,Yuan Shijian1

Affiliation:

1. School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China

2. State Key Laboratory of High-Performance Precision Manufacturing, Dalian 116024, China

Abstract

The simple shear test shows significant advantages when measuring the hardening and shear properties of thin sheet metal at large strains. However, previous shear tests had an end effect caused by local stress concentration and a boundary effect caused by deformation overflow, resulting in non-uniform strain distribution in the shear zone. Therefore, a unique V-shaped double-shear-zone specimen is proposed to measure the Bauschinger effect under cyclic shear loading conditions in this paper. Simple shear experiments and three different types of cycle shear experiments are conducted to analyze the uniformity of deformation in the shear zone and the effect of pre-strain and the number of cyclic loads on the Bauschinger effect of Q890 high-strength steel sheets. The results indicate that the proposed V-shaped double-shear-zone specimen can still maintain uniform shear deformation in forward/reverse cyclic loading experiments, even at large strains. Q890 high-strength steel exhibits a significant Bauschinger effect, which is more pronounced with the increase in shear pre-strain and loading cycles. The results of this paper provide a new approach for studying the hardening characteristics under large strain and the mechanical properties under cyclic shear loading for metal sheets.

Funder

National Natural Science Foundation of China

Liaoning Revitalization Talents Program

Fundamental Research Funds for the Central Universities of China

Publisher

MDPI AG

Subject

General Materials Science

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3