Effect of Micro-Nano Bubble Water and Silica Fume on Properties of C60 Concrete

Author:

He Shuang1,He Tingshu1,Wan Zhenmin1ORCID,Zhao Qing1

Affiliation:

1. Faculty of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710064, China

Abstract

Micro-nano bubble water (WNBW) in concrete is relatively uncommon due to its newness as a technology. This paper presents the preparation of C60 concrete with 35% fly ash (FA) through WNBW and varying amounts of silica fume (0%, 4%, 7%, and 10% SF). The study examines the impact of WNBW and SF on the working performance, compressive strength, and durability of concrete. The findings indicate that applying WNBW and SF independently or jointly deteriorates the working performance of fresh concrete. However, compared to regular mixing water, WNBW reduces the concrete passing time through the V-funnel, decreasing by 40%, 39.1%, 42.9%, and 50.5% for the four varying SF contents. Furthermore, using WNBW, SF, or both resulted in the increased compressive strength of concrete at 7 days and 28 days, with 7% SF content yielding a 12.2% and 6.6% increase, respectively. Using a combination of WNBW and SF has been shown to decrease the impermeability of concrete effectively. The addition of 4% SF results in the lowest electric flux when using regular mixing water, with a discernible decrease of 30.1% compared to the control group. Conversely, using WNBW as mixing water yields a decrease in electric flux at each SF content, with the maximum decrease being 39.7%. Furthermore, both the single and combined use of these materials can contribute to the reduction in the carbonation resistance of the concrete. C60 concrete mixed with 7% SF and 100% WNBW boasts enhanced frost resistance, as indicated by the mass loss and dynamic elastic modulus loss being the least following freeze–thaw under the same SF content. According to the findings of the tests, there is evidence that the incorporation of 7% SF and 100% WNBW into C60 concrete results in lowered viscosity, a highly advantageous attribute for actual construction. Additionally, this mixture displays impressive compressive strength and durability properties. These results provide technical support regarding the integration of WNBW and SF in C60 concrete.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3