Behavioral Evaluation of Strengthened Reinforced Concrete Beams with Ultra-Ductile Fiber-Reinforced Cementitious Composite Layers

Author:

Khan Mohammad Iqbal1ORCID,Abbas Yassir M.1ORCID

Affiliation:

1. Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

Abstract

In the literature, there is little information available regarding the behavior of composite beams made up of reinforced concrete (RC) and ultra-ductile fiber-reinforced concrete (UDFRC). In this study, UDFRC was examined for its effectiveness in enhancing the strength of RC beams. With a tensile strength of 4.35 MPa and a strain capacity of 2.5%, PVA-based UDFRC was prepared. The performance of 12 medium-sized reinforced concrete (RC) beams was measured under four-point flexural loading. The beams measured 1800 mm long, 150 mm wide, and 200–260 mm deep. The experimental program on beam specimens was divided into two phases. In the first, four 150 × 200 × 1800 mm RC beams with UDFRC layer thicknesses of 0, 30, 60, and 90 mm were tested. Additionally, four concrete and four concrete–UDFRC beams were investigated, measuring 150 × 230 × 1800 mm and 150 × 260 × 1800 mm, respectively. The study focused on medium-sized, slender RC beams under quasi-static loads and room temperature with additional or substituted UDFRC layers. As a result of replacing concrete with UDFRC, the load-carrying capacity at first crack and steel yield significantly increased between 18.4 and 43.1%, but the ultimate load-carrying capacity increased only in the range of 6.3–10.8%. Furthermore, beams with additional UDFRC layers could carry 30–50% more load than their concrete counterparts. An RC-UDFRC beam had a load-carrying capacity 10–15% greater than that of a comparable RC beam. Generally, there is a lower deflection response in UDFRC–concrete composite RC beams than in control concrete beams. The UDFRC layering can potentially improve the load-carrying capacity of RC beams, at least when ductility provisions are considered.

Funder

King Saud University, Kingdom of Saudi Arabia

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3