Damage Imaging Identification of Honeycomb Sandwich Structures Based on Lamb Waves

Author:

Su Chenhui1,Zhang Wenchao1,Liang Lihua1,Zhang Yuhang1,Sui Qingmei2

Affiliation:

1. Shandong Key Laboratory of Intelligent Buildings Technology, School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China

2. School of Control Science and Engineering, Shandong University, Jinan 250061, China

Abstract

In the field of structural health monitoring, Lamb Wave has become one of the most widely used inspection tools due to its advantages of wide detection range and high sensitivity. In this paper, a new damage detection method for honeycomb sandwich structures based on frequency spectrum and Lamb Wave Tomography is proposed. By means of simulation and experiment, a certain number of sensors were placed on the honeycomb sandwich plate to stimulate and receive the signals in both undamaged and damaged cases. By Lamb Wave Tomography, the differences of signals before and after damage were compared, and the damage indexes were calculated. Furthermore, the probability of each sensor path containing damage was analyzed, and the damage image was finally realized. The technology does not require analysis of the complex multimode propagation properties of Lamb Wave, nor does it require understanding and modeling of the properties of materials or structures. In both simulation and experiment, the localization errors of the damage conform to the detection requirements, thus verifying that the method has certain feasibility in damage detection.

Funder

Doctoral Research Fund Project of Shandong Jianzhu University

Shandong Province Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3