Improving Hydrological Simulation Accuracy through a Three-Step Bias Correction Method for Satellite Precipitation Products with Limited Gauge Data

Author:

Liu Xing1ORCID,Yong Zhengwei1,Liu Lingxue23,Chen Ting45,Zhou Li25ORCID,Li Jidong1

Affiliation:

1. College of Water Resources and Hydropower, Sichuan Agricultural University, Ya’an 625014, China

2. Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610065, China

3. School of Emergency Management, Xihua University, Chengdu 610039, China

4. College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China

5. State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China

Abstract

Satellite precipitation products (SPPs) have advanced remarkably in recent decades. However, the bias correction of SPPs still performs unsatisfactorily in the case of a limited rain-gauge network. This study proposes a new real-time bias correction approach that includes three steps to improve the precipitation quality with limited gauges and facilitate the hydrological simulation in the Min River Basin, China. This paper employed 66 gauges as available ground observation precipitation, Asian Precipitation—Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) as the historical precipitation to correct Global Satellite Mapping of Precipitation NOW (GNOW) and Global Satellite Mapping of Precipitation NRT (GNRT) in 2020. A total of 1020 auto-rainfall stations were used as the benchmark to evaluate the original and corrected SPPs with six criteria. The results show that the statistic and dynamic bias correction method (SDBC) improved the SPPs significantly and the cumulative distribution function matching method (CDF) could reduce the overcorrection error from SDBC. The inverse error variance weighting method (IEVW) integrations of GNOW and GNRT did not have noticeable improvement as they use similar hardware and software processes. The corrected SPPs show better performance in hydrological simulations. It is recommended to employ different SPPs for integration. The proposed bias correction approach is significant for precipitation estimation and flood prediction in data-sparse basins worldwide.

Funder

Sichuan University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3