On the Post Hoc Explainability of Optimized Self-Organizing Reservoir Network for Action Recognition

Author:

Lee Gin ChongORCID,Loo Chu KiongORCID

Abstract

This work proposes a novel unsupervised self-organizing network, called the Self-Organizing Convolutional Echo State Network (SO-ConvESN), for learning node centroids and interconnectivity maps compatible with the deterministic initialization of Echo State Network (ESN) input and reservoir weights, in the context of human action recognition (HAR). To ensure stability and echo state property in the reservoir, Recurrent Plots (RPs) and Recurrence Quantification Analysis (RQA) techniques are exploited for explainability and characterization of the reservoir dynamics and hence tuning ESN hyperparameters. The optimized self-organizing reservoirs are cascaded with a Convolutional Neural Network (CNN) to ensure that the activation of internal echo state representations (ESRs) echoes similar topological qualities and temporal features of the input time-series, and the CNN efficiently learns the dynamics and multiscale temporal features from the ESRs for action recognition. The hyperparameter optimization (HPO) algorithms are additionally adopted to optimize the CNN stage in SO-ConvESN. Experimental results on the HAR problem using several publicly available 3D-skeleton-based action datasets demonstrate the showcasing of the RPs and RQA technique in examining the explainability of reservoir dynamics for designing stable self-organizing reservoirs and the usefulness of implementing HPOs in SO-ConvESN for the HAR task. The proposed SO-ConvESN exhibits competitive recognition accuracy.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference67 articles.

1. Deep neural networks predict hierarchical spatio-temporal cortical dynamics of human visual object recognition;Cichy;arXiv,2016

2. A survey on using domain and contextual knowledge for human activity recognition in video streams

3. 3D skeleton-based human action classification: A survey

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3