Climate and Land-Use Change Effects on Soil Carbon Stocks over 150 Years in Wisconsin, USA

Author:

Huang JingyiORCID,Hartemink Alfred E.,Zhang Yakun

Abstract

Soil organic carbon is a sink for mitigating increased atmospheric carbon. The international initiative “4 per 1000” aims at implementing practical actions on increasing soil carbon storage in soils under agriculture. This requires a fundamental understanding of the soil carbon changes across the globe. Several studies have suggested that the global soil organic carbon stocks (SOCS) have decreased due to global warming and land cover change, while others reported SOCS may increase under climate change and improved soil management. To better understand how a changing climate, land cover, and agricultural activities influence SOCS across large extents and long periods, the spatial and temporal variations of SOCS were estimated using a modified space-for-time substitution method over a 150-year period in the state of Wisconsin, USA. We used legacy soil datasets and environmental factors collected and estimated at different times across the state (169,639 km2) coupled with a machine-learning algorithm. The legacy soil datasets were collected from 1980 to 2002 from 550 soil profiles and harmonized to 0.30 m depth. The environmental factors consisted of 100-m soil property maps, 1-km annual temperature and precipitation maps, 250-m remote-sensing (i.e., Landsat)-derived yearly land cover maps and a 30-m digital elevation model. The model performance was moderate but can provide insights on understanding the impacts of different factors on SOCS changes across a large spatial and temporal extent. SOCS at the 0–0.30 m decreased at a rate of 0.1 ton ha−1 year−1 between 1850 and 1938 and increased at 0.2 ton ha−1 year−1 between 1980 and 2002. The spatial variation in SOCS at 0–0.30 m was mainly affected by land cover and soil types with the largest SOCS found in forest and wetland and Spodosols. The loss between 1850 and 1980 was most likely due to land cover change while the increase between 1980 and 2002 was due to best soil management practices (e.g., decreased erosion, reduced tillage, crop rotation and use of legume and cover crops).

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3