Monitoring of Nitrogen and Grain Protein Content in Winter Wheat Based on Sentinel-2A Data

Author:

Zhao ,Song ,Yang ,Li ,Zhang ,Feng

Abstract

Grain protein content (GPC) is an important indicator of wheat quality. Earlier estimation of wheat GPC based on remote sensing provided effective decision to adapt optimized strategies for grain harvest, which is of great significance for agricultural production. The objectives of this field study are: (i) To assess the ability of spectral vegetation indices (VIs) of Sentinel 2 data to detect the wheat nitrogen (N) attributes related to the grain quality of winter wheat production, and (ii) to examine the accuracy of wheat N status and GPC estimation models based on different VIs and wheat nitrogen parameters across Analytical Spectra Devices (ASD) and Unmanned Aerial Vehicle (UAV) hyper-spectral data-simulated sentinel data and the real Sentinel-2 data. In this study, four nitrogen parameters at the wheat anthesis stage, including plant nitrogen accumulation (PNA), plant nitrogen content (PNC), leaf nitrogen accumulation (LNA), and leaf nitrogen content (LNC), were evaluated for their relationship between spectral parameters and GPC. Then, a multivariate linear regression method was used to establish the wheat nitrogen and GPC estimation model through simulated Sentinel-2A VIs. The coefficients of determination (R2) of four nitrogen parameter models were all greater than 0.7. The minimum R2 of the prediction model of wheat GPC constructed by four nitrogen parameters combined with VIs was 0.428 and the highest R2 was 0.467. The normalized root mean square error (nRMSE) of the four nitrogen estimation models ranged from 26.333% to 29.530% when verified by the ground-measured data collected from the Beijing suburbs, and the corresponding nRMSE for the GPC-predicted models ranged from 17.457% to 52.518%. The accuracy of the estimated model was verified by UAV hyper-spectral data which had resized to different spatial resolution collected from the National Experimental Station for Precision Agriculture. The normalized root mean square error (nRMSE) of the four nitrogen estimation models ranged from 16.9% to 37.8%, and the corresponding nRMSE for the GPC-predicted models ranged from 12.3% to 13.2%. The relevant models were also verified by Sentinel-2A data collected in 2018 while the minimum nRMSE for GPC invert model based on PNA was 7.89% and the maximum nRMSE of the GPC model based on LNC was 12.46% in Renqiu district, Hebei province. The nRMSE for the wheat nitrogen estimation model ranged from 23.200% to 42.790% for LNC and PNC. These data demonstrate that freely available Sentinel-2 imagery can be used as an important data source for wheat nutrition and grain quality monitoring.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference81 articles.

1. The Effect of Nitrogen Application Rates and Timings of First Irrigation on Wheat Growth and Yield;Yousaf;Int. J. Agric. Innov. Res.,2014

2. Research progress in wheat grain protein content monitoring using remote sensing;Li;Trans. Chin. Soc. Agric. Eng.,2009

3. Predicting grain protein content of winter wheat using remote sensing data based on nitrogen status and water stress

4. Predicting Grain Yield and Protein Content in Winter Wheat at Different N Supply Levels Using Canopy Reflectance Spectra

5. Effects of nitrogenous fertilizer on the growth, grain yield and grain protein concentration of wheat

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3