Author:
Cao Shuang,Yu Yongtao,Guan Haiyan,Peng Daifeng,Yan Wanqian
Abstract
Vehicle detection from remote sensing images plays a significant role in transportation related applications. However, the scale variations, orientation variations, illumination variations, and partial occlusions of vehicles, as well as the image qualities, bring great challenges for accurate vehicle detection. In this paper, we present an affine-function transformation-based object matching framework for vehicle detection from unmanned aerial vehicle (UAV) images. First, meaningful and non-redundant patches are generated through a superpixel segmentation strategy. Then, the affine-function transformation-based object matching framework is applied to a vehicle template and each of the patches for vehicle existence estimation. Finally, vehicles are detected and located after matching cost thresholding, vehicle location estimation, and multiple response elimination. Quantitative evaluations on two UAV image datasets show that the proposed method achieves an average completeness, correctness, quality, and F1-measure of 0.909, 0.969, 0.883, and 0.938, respectively. Comparative studies also demonstrate that the proposed method achieves compatible performance with the Faster R-CNN and outperforms the other eight existing methods in accurately detecting vehicles of various conditions.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Natural Science Research in Colleges and Universities of Jiangsu Province
Subject
General Earth and Planetary Sciences
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献