Analysis of Critical Current Dependence on Specimen Length and Crack Size Distribution in Cracked Superconductor

Author:

Ochiai Shojiro1ORCID,Okuda Hiroshi2

Affiliation:

1. Elements Strategy Initiative for Structural Materials, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

2. Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

Abstract

In order to describe the dependence of critical current on specimen length and crack size distribution in the superconducting tape with cracks of different sizes, a Monte Carlo simulation and a model analysis were carried out, employing the model specimens of various lengths constituted of multiple short sections with a crack per each. The model analysis was carried out to evaluate the effects of the two factors on the critical current of a specimen. Factor 1 is the size of the largest crack in a specimen, and Factor 2 is the difference in crack size among all sections at the critical voltage of critical current. Factors 1 and 2 were monitored by the smallest ligament parameter among all sections constituting the specimen and by the number of sections equivalent to the section containing the largest crack at the critical voltage of the critical current of the specimen, respectively. The research using the monitoring method revealed quantitatively that the critical current-reducing effect with increasing specimen length is caused by the increase in the size of the largest crack (Factor 1), and also, the critical current-raising effect is caused by the increase in the difference of crack size (Factor 2). As the effect of Factor 1 is larger than that of Factor 2, the critical current decreases with increasing specimen length. With the present approach, the critical current reducing and raising effects under various crack size distributions were evaluated quantitatively as a function of specimen length, and the specimen length-dependence of critical current obtained by the Monte Carlo simulation was described well.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3