The Investigation of the Production of Salt-Added Polyethylene Oxide/Chitosan Nanofibers

Author:

Varnaitė-Žuravliova Sandra1ORCID,Savest Natalja2,Baltušnikaitė-Guzaitienė Julija1ORCID,Abraitienė Aušra1,Krumme Andres2ORCID

Affiliation:

1. Department of Textile Technologies, Center for Physical Sciences and Technology, Demokratų Str. 53, LT-48485 Kaunas, Lithuania

2. Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate Tee 5, EE-19086 Tallinn, Estonia

Abstract

The influence of different concentrations of salt-added polyethylene oxide (PEO) on the spinnability of chitosan (CS)/PEO + NaCl blends that could be used as a component part of filters for water treatment or nanofiber membranes as well as for medical applications was investigated in this study. The morphological properties of manufactured nanofibers were analyzed as well. It was determined that an increase of PEO concentration resulted mostly in thin and round nanofibers formed during electrospinning, but the manufacturing process became complex, because many wet fibers reached the collector while spinning. Also, it was noticed that the salt was not dissolved completely in the polymer solutions and some crystals were seen in the SEM images of manufactured fiber mats. However, the addition of salt resulted in lower viscosity and better conductivity of solution and fiber mats as well. The opposite effect was observed as the concentration of PEO was increased. The orientation of produced nanofibers as well as their diameter were analyzed with commercially available software. It was determined that the results obtained by software and microscopically are repeatable. The difference among the results of diameter calculated with software and taken by microscope varied from 0% to approximately 12%. The FTIR analyses indicated that alterations in polymer concentrations or the addition of salt did not induce any discernible changes in the chemical composition or nature of the materials under investigation. The sodium chloride present in the solutions enhanced electrical properties and increased conductivity values more than 50 times for PEO solutions and six times for CS/PEO blend solutions, compared to conductivity values of solutions without salt. To assess the thermal characteristics of the PEO/CS blend nanofibers, measurements using a differential scanning calorimeter (DSC) to determine melting (Tm) and crystallization (Tc) temperatures, as well as specific heat capacities were conducted. These parameters were derived from the analysis of endothermic and exothermic peaks observed in the DSC data. It showed that all produced nanofibers were semicrystalline.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3