Photocatalytic Activity and Self-Cleaning Effect of Coating Mortars with TiO2 Added: Practical Cases in Warm Sub-Humid Climates

Author:

Kuk-Dzul Liliana1,Jiménez Luis F.1,Vega-Azamar Ricardo E.1ORCID,Gurrola Mayra P.2ORCID,Cruz Julio C.1ORCID,Trejo-Arroyo Danna L.2

Affiliation:

1. Tecnológico Nacional de México/I.T. de Chetumal, Av. Insurgentes 330, Chetumal 77013, Mexico

2. IxM-CONAHCYT-Tecnológico Nacional de México/I.T. de Chetumal, Av. Insurgentes 330, Chetumal 77013, Mexico

Abstract

In this study, the photocatalytic activity of coating mortars with synthetized and commercial TiO2 nanoparticles added has been evaluated at 2, 3 and 5% by weight of cement by calculating the degradation efficiency of methyl orange and red wine dyes exposed to both visible-light and UV radiation; also, the self-cleaning effect of coatings exposed to weather conditions (warm sub-humid climate) was assessed. TiO2 nanoparticles were synthesized via the sol–gel method to a low synthesis temperature and characterized via X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The results show synthesized TiO2 particles in anatase phase with a crystallite size of 14.69 nm, and hemispherical particles with sizes of submicron order. The addition percentage with the best performance in the coating mortars was 3%, with both commercial and synthesized TiO2; however, coating mortars with synthesized TiO2 exhibited the highest degradation efficiency for both dyes when they were exposed to visible light, while mortars with commercial TiO2 exhibited the highest degradation efficiency when exposed to UV radiation. In addition, in coating mortars with synthesized TiO2, the self-cleaning effect was evident from the beginning of exposure to weather, reaching the largest dye-free surface at the end of exposure. The compressive strength increased significantly in mortars with TiO2 addition.

Funder

Tecnológico Nacional de México/I.T. de Chetumal

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3