Interface Mechanics of Double-Twisted Hexagonal Gabion Mesh with Coarse-Grained Filler Based on Pullout Test

Author:

Gao Wenhui1,Lin Yuliang1ORCID,Wang Xin2,Zhou Tianya2,Zheng Chaoxu2

Affiliation:

1. School of Civil Engineering, Central South University, Changsha 410075, China

2. Shenzhen Municipal Group Co., Ltd., Shenzhen 518000, China

Abstract

The interface friction mechanics of reinforcement material with filler is an essential issue for the engineering design of reinforced soil structure. The interface friction mechanics is closely associated with the properties of filler and reinforcement material, which subsequently affects the overall stability. In order to investigate the interface mechanism of a double-twisted hexagonal gabion mesh with a coarse-grained filler derived from a weathered red sandstone, a large laboratory pullout test was carried out. The pullout force–displacement curve was obtained by fully mobilizing the gabion mesh to reach the peak shear stress at the interface between the gabion mesh and the coarse-grained filler. The change of force–displacement characteristics and the distribution of tensile stress in gabion mesh during the pullout process were obtained. A 3D numerical model was established based on the pullout test model, and the model for analyzing the interface characteristic between the gabion mesh and the coarse-grained filler was modeled using the FLAC3D 6.0 platform. The interface characteristics were further analyzed in terms of the displacement of soil, the displacement of reinforcement, and the shear stress of soil. The strength and deformation behaviors of the interface during the entire pullout process were well captured. The pullout force–displacement curve experiences a rapid growth stage, a development transition stage and a yielding stabilization stage. The critical displacement corresponding to peak pullout stress increases with the increase in normal stress. The normal stress determines the magnitude of shear stress at the reinforcement and soil interface, and the displacement distribution of a gabion mesh is not significantly affected by normal stress when the applied normal stress is within a range of 7–20 kPa. The findings are beneficial to engineering design and application of a gabion mesh-reinforced soil structure.

Funder

National Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3