Author:
Han Ziwei,Chen Peiyao,Hou Meifang,Li Qianqian,Su Guijin,Meng Jing,Shi Bin,Deng Jie
Abstract
Hydrogels, as an emerging extinguishant, exhibit outstanding performance in forest fire rescues. However, the near-zero freezing point limits their application at low temperatures. Herein, a sensible candidate commercial extinguishant was selected for analysis, and its freezing point was modified based on the evaluation of water absorption rate, agglomeration, viscosity, and water dispersibility. Notably, the introduction of different antifreeze and flame retardant exhibited a significant disparate impact on the viscosity representative factor. Ten orthogonal experiments were performed to optimize the specific formulation. When ethylene glycol, urea and ammonium bicarbonate, and xanthan gum were applied as antifreeze, flame retardant, and thickener, with the addition amounts of 5 mL, 0.08 g and 0.04 g, and 0.12 g, respectively, the hydrogel extinguishant with 1% ratio in 50 mL of ultra-water featured the remarkable performance. Compared with the original extinguishant, the freezing point of the modified sample decreased from −0.3 to −9.2 °C. The sample’s viscosity was improved from 541 to 1938 cP, and the flame retardance time was more than 120 s. The results of corrosion and biotoxicity show that the optimized hydrogel extinguishant satisfies the national standards. This understanding provides a deeper insight into the application of low-temperature extinguishants in forest fires.
Funder
National Natural Science Foundation of China
Tianjin Fire Research Institute
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献