Few-Layers Graphene-Based Cement Mortars: Production Process and Mechanical Properties

Author:

Polverino Salvatore,Del Rio Castillo Antonio Esau,Brencich AntonioORCID,Marasco Luigi,Bonaccorso Francesco,Morbiducci Renata

Abstract

Cement is the most-used construction material worldwide. Research for sustainable cement production has focused on including nanomaterials as additives to enhance cement performance (strength and durability) in recent decades. In this concern, graphene is considered one of the most promising additives for cement composites. Here, we propose a novel technique for producing few-layer graphene (FLG) that can fulfil the material demand for the construction industry. We produced specimens with different FLG loadings (from 0.05% to 1% by weight of cement) and curing processes (water and saturated air). The addition of FLG at 0.10% by weight of cement improved the flexural strength by 24% compared to the reference (bare) sample. Similarly, a 0.15% FLG loading by weight of cement led to an improvement in compressive strength of 29% compared to the reference specimen. The FLG flakes produced by our proposed methodology can open the door to their full exploitation in several cement mortar applications, such as cementitious composites with high durability, mechanical performance and high electrical conductivity for electrothermal applications.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference90 articles.

1. Sustainable Construction: Green Building Design and Delivery;Kibert,2016

2. GlobalABC Roadmap for Buildings and Construction: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector,2020

3. Global construction materials database and stock analysis of residential buildings between 1970-2050

4. Buildings as a global carbon sink

5. An Empathetic Added Sustainability Index (EASI) for cementitious based construction materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3