Abstract
An aim of sustainable development of the manufacturing industry is to reduce the idle time in the product-assembly process and improve the balance efficiency of the assembly line. A priority relationship diagram is obtained on an existing assembly line in the laboratory by measuring the task time of the chassis model, analyzing the product structure, and designing the assembly process. The type-E balance model of the U-shaped assembly line is established and solved by a heuristic algorithm based on the comprehensive rank value. The type-E balance problem of the U-shaped assembly-line plan of the chassis model is obtained, and the production line layout is planned. Combining instances to compare the results of the heuristic algorithm, genetic algorithm, and simulated annealing, comparison of the results shows that the degree of load balancing is slightly higher than genetic algorithm and simulated annealing. The balance efficiencies obtained by the heuristic algorithm are smaller than the genetic algorithm and simulated annealing. The calculation time is significantly less than the genetic algorithm and simulated annealing, and the scale of instances has little effect on the calculation time. The results verify that the model and the algorithm are effective. This study provides a reference for the entire process of the U-shaped assembly-line, type-E balance and the assembly products in laboratories.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献