Simulation and Spatio-Temporal Variation Characteristics of LULC in the Context of Urbanization Construction and Ecological Restoration in the Yellow River Basin

Author:

Yang Can,Wei Tianxing,Li Yiran

Abstract

The Yellow River Basin (YRB), located in the northern region of China, has a fragile ecological environment. With the construction of urbanization and ecological restoration projects, the YRB LULC has undergone significant change. In this study, we used the coupled Markov-FLUS model by combining natural and social driver factors to predict and simulate the LULC of the YRB in 2030, and then the LULC transfer matrix was used to analyze the characteristics of LULC change in the YRB from 1990 to 2030. The results of the study are as follows. (1) For the simulated result of LULC compared with the same period observed result, the Kappa coefficient is 0.92, indicating the coupled Markov-FLUS model has good applicability in the YRB. (2) The LULC in the YRB shows significant spatial autocorrelation. The cropland is mainly distributed in the eastern region, which is dominated by plain; woodland is mainly distributed in the central region; grassland is mainly distributed in the northern, central, and western region; waterbody is mainly distributed in the western region; built-up land is mainly distributed in the northern, south-central, and eastern region; unused land is mainly distributed in the central, northern, and western region. (3) From 1990 to 2000, the area of cropland transferred in significantly and the area of grassland transferred out significantly; from 2000 to 2015, the area of construction land transferred in significantly and the area of cultivated land transferred out significantly; from 2015 to 2030, the amount of cropland transferred out will be large, and the conversion of each other LULC type will be not significant compared with the previous periods, and the conversion structure of LULC will tend to be stable. This study is a crucial reference value for the high-quality development of the Yellow River Basin.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3