Investigating Students’ Adoption of MOOCs during COVID-19 Pandemic: Students’ Academic Self-Efficacy, Learning Engagement, and Learning Persistence

Author:

Alamri Mahdi MohammedORCID

Abstract

Students’ learning environments are significantly influenced by massive open online courses (MOOCs). To better understand how students could implement learning technology for educational purposes, this study creates a structural equation model and tests confirmatory factor analysis. Therefore, the aim of this study was to develop a model through investigating observability (OB), complexity (CO), trialability (TR), and perceived usefulness (PU) with perceived ease-of-use (PEU) of MOOCs adoption by university students to measure their academic self-efficacy (ASE), learning engagement (LE), and learning persistence (LP). As a result, the study used an expanded variant of the innovation diffusion theory (IDT) and the technology acceptance model (TAM) as the research model. Structural Equation Modeling (SEM) with Smart-PLS was applied to quantitative data collection and analysis of 540 university students as respondents. Student responses were grouped into nine factors and evaluated to decide the students’ ASE, LE, and LP. The findings revealed a clear correlation between OB, CO, and TR, all of which were important predictors of PU and PEU. Students’ ASE, LE, and LP were affected by PEU and PU. This study’s established model was effective in explaining students’ ASE, LE, and LP on MOOC adoption. These findings suggest implications for designing and developing effective instructional and learning strategies in MOOCs in terms of learners’ perceptions of themselves, their instructors, and learning support systems.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference84 articles.

1. Digging deeper into learners' experiences in MOOCs: Participation in social networks outside of MOOCs, notetaking and contexts surrounding content consumption

2. The MOOC Model for Digital Practicehttps://oerknowledgecloud.org/sites/oerknowledgecloud.org/files/MOOC_Final.pdf

3. Characteristics of Massive Open Online Courses (MOOCs): A Research Review, 2009–2012;Kennedy;J. Interact. Online Learn.,2014

4. Self-directed learning in MOOCs: exploring the relationships among motivation, self-monitoring, and self-management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3