Adsorption and Removal of Composite Contaminants in Water Using Thermoplastic Polyurethane Nanofiber Membranes with Polydopamine–Polyethyleneimine Coatings

Author:

Qin Yan1,Sun Jiaoxia1,Zhou Yao1,Fan Jianxin1,Hu Ying1

Affiliation:

1. School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China

Abstract

Dye wastewater containing bisphenol A (BPA) and dyes as pollutants has not been adequately studied. Our previous study revealed that thermoplastic polyurethane (TPU) nanofiber membranes (NFMs) modified by the addition of polyethyleneimine (PEI) and polydopamine (PDA) satisfactorily adsorb dyes. Herein, we first optimized the synthesis conditions for such membranes, noting a PEI/PDA monomer ratio of 2:2 and a deposition time of 48 h to be optimal. Experiments using these membranes revealed that binary systems containing BPA and the dyes (Congo red (CR), Eosin yellow (EY), or sunset yellow (SY)) exhibit three adsorption behaviors. CR and BPA compete with each other for adsorption sites, decreasing the maximum adsorption capacity (Qmax) for CR 208.3 mg/g (in a monomeric system) to 182.4 mg/g. The adsorption rates for CR and BPA decreased from 0.002 min−1 and 0.331 min−1 in the monomeric systems to 8.37 × 10−4 min−1 and 0.072 min−1, respectively, in the binary CR–BPA system, exhibiting antagonistic effects. When EY and BPA coexisted, Qmax for EY increased from 60.0 (monomeric) to 71.9 mg/g, whereas that for BPA increased from 35.6 to 43.2 mg/g, showing a synergistic effect due to the possible bridging effect. The adsorption sites for SY and BPA are independent of each other. The novelty of this study is the finding that PDA/PEI-TPU NFMS exhibited high adsorption capacity for dyes and BPA in binary composite systems and PDA/PEI-TPU NFMs showed different adsorption patterns for three dye–BPA binary composite systems. The preparation of PDA/PEI-TPU NFMs and the investigation of the adsorption mechanism for dye–BPA binary composite systems are not only of theoretical importance but also provide experimental and data support for practical applications.

Funder

Science and Technology Research Project of Chongqing Municipal Education Commission

National Engineering Research Center for Inland Waterway Regulation

Natural Science Foundation of Chongqing, China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3