Static Reservoir Simulations and Seismic Attributes Application to Image the Miocene Deep-Water Reservoirs in Southeast Asia

Author:

Naseer Muhammad Tayyab12,Khalid Raja Hammad2,Naseem Shazia2,Li Wei34ORCID,Kontakiotis George5ORCID,Radwan Ahmed E.6ORCID,Janjuhah Hammad Tariq7,Antonarakou Assimina5ORCID

Affiliation:

1. Center for Earthquake Studies, National Center for Physics, Quaid-I-Azam University Campus, Islamabad 44000, Pakistan

2. Department of Earth Sciences, Quaid-I-Azam University, Islamabad 44000, Pakistan

3. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China

4. College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China

5. Department of Historical Geology-Paleontology, Faculty of Geology and Geoenvironment, School of Earth Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784 Athens, Greece

6. Faculty of Geography and Geology, Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387 Kraków, Poland

7. Department of Geology, Shaheed Benazir Bhutto University, Sheringal 18050, Pakistan

Abstract

Globally, deep-water reservoir systems are comprised of a variety of traps. Lateral and downdip trapping features include sand pinch-outs, truncation against salt or shale diapirs, and monoclinal dip or faulting with any combination of trapping designs; the potential for massive hydrocarbon accumulations exists, representing significant exploration prospects across the planet. However, deep-water turbidites and submarine fans are two different types of traps, which are developed along the upslope and the basin floor fans. Among these two traps, the basin floor fans are the most prolific traps as they are not influenced by sea-level rise, which distorts the seismic signals, and hence provides ambiguous seismic signatures to predict them as hydrocarbon-bearing zones for future explorations. Therefore, the deep-water channel-levee sand systems and basin floor fans sandstone define economically viable stratigraphic plays. The subsurface variability is significant, and hence, characterizing the thick (porous) channelized-basin floor fans reservoir is a challenge for the exploitation of hydrocarbons. This study aims to develop seismic-based attributes and wedge modeling tools to accurately resolve and characterize the porous and gas-bearing reservoirs using high-resolution seismic-based profiles, in SW Pakistan. The reflection strength slices better delineate the geomorphology of sand-filled channelized-basin floor fans as compared to the instant frequency magnitudes. This stratigraphic prospect has an area of 1180 km2. The sweetness magnitudes predict the thickness of channelized-basin floor fans as 33 m, faults, and porous lithofacies that complete a vital petroleum system. The wedge modeling also acts as a direct hydrocarbon indicator (DHI) and, hence, should be incorporated into conventional stratigraphic exploration schemes for de-risking stratigraphic prospects. The wedge model resolves a 26-m thick hydrocarbon-bearing channelized-basin floor fans lens with a lateral distribution of ~64 km. Therefore, this wedge model provides ~75% correlation of the thickness of the LSL as measured by sweetness magnitudes. The thickness of shale that serves as the top seal is 930 m, the lateral mud-filled canyons are 1190 m, and the thick bottom seal is ~10 m, which provides evidence for the presence of a vibrant petroleum play. Hence, their reveals bright opportunities to exploit the economically vibrant stratigraphic scheme inside the OIB and other similar global depositional systems.

Funder

China Postdoctoral Program for Innovative Talents

National Natural Science Foundation Project of China

Young Elite Scientist Sponsorship Program by BAST, China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3