Using Python Modules in Real-Time Plasma Systems for Fusion

Author:

Ferron Nicolo,Manduchi Gabriele

Abstract

One of the most important applications of sensors is feedback control, in which an algorithm is applied to data that are collected from sensors in order to drive system actuators and achieve the desired outputs of the target plant. One of the most challenging applications of this control is represented by magnetic confinement fusion, in which real-time systems are responsible for the confinement of plasma at a temperature of several million degrees within a toroidal container by means of strong electromagnetic fields. Due to the fast dynamics of the underlying physical phenomena, data that are collected from electromagnetic sensors must be processed in real time. In most applications, real-time systems are implemented in C++; however, Python applications are now becoming more and more widespread, which has raised potential interest in their applicability in real-time systems. In this study, a framework was set up to assess the applicability of Python in real-time systems. For this purpose, a reference operating system configuration was chosen, which was optimized for real time, together with a reference framework for real-time data management. Within this framework, the performance of modules that computed PID control and FFT transforms was compared for C++ and Python implementations, respectively. Despite the initial concerns about Python applicability in real-time systems, it was found that the worst-case execution time (WCET) could also be safely defined for modules that were implemented in Python, thereby confirming that they could be considered for real-time applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3