Optical Remote Sensing Image Denoising and Super-Resolution Reconstructing Using Optimized Generative Network in Wavelet Transform Domain

Author:

Feng XubinORCID,Zhang WuxiaORCID,Su Xiuqin,Xu Zhengpu

Abstract

High spatial quality (HQ) optical remote sensing images are very useful for target detection, target recognition and image classification. Due to the influence of imaging equipment accuracy and atmospheric environment, HQ images are difficult to acquire, while low spatial quality (LQ) remote sensing images are very easy to acquire. Hence, denoising and super-resolution (SR) reconstruction technology are the most important solutions to improve the quality of remote sensing images very effectively, which can lower the cost as much as possible. Most existing methods usually only employ denoising or SR technology to obtain HQ images. However, due to the complex structure and the large noise of remote sensing images, the quality of the remote sensing image obtained only by denoising method or SR method cannot meet the actual needs. To address these problems, a method of reconstructing HQ remote sensing images based on Generative Adversarial Network (GAN) named “Restoration Generative Adversarial Network with ResNet and DenseNet” (RRDGAN) is proposed, which can acquire better quality images by incorporating denoising and SR into a unified framework. The generative network is implemented by fusing Residual Neural Network (ResNet) and Dense Convolutional Network (DenseNet) in order to consider denoising and SR problems at the same time. Then, total variation (TV) regularization is used to furthermore enhance the edge details, and the idea of Relativistic GAN is explored to make the whole network converge better. Our RRDGAN is implemented in wavelet transform (WT) domain, since different frequency parts could be handled separately in the wavelet domain. The experimental results on three different remote sensing datasets shows the feasibility of our proposed method in acquiring remote sensing images.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference45 articles.

1. Deep Memory Connected Neural Network for Optical Remote Sensing Image Restoration

2. Cubic spline for image interpolation and digital filtering;Hou;IEEE Trans. Image Process.,1978

3. Quadratic interpolation for image resampling

4. Multi-frame image restoration and registration;Huang;Adv. Comput. Vis. Image Process.,1984

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3